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A PRODUCT OPERATOR DESCRIPTION OF 2D-J RESOLVED NMR
SPECTROSCOPY FOR IS, SPIN SYSTEM (/=1/2, $=1)
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ABSTRACT

Using the product operator technique. an analytical description of

heteronuclear 2D-J resolved NMR spectroscopy for a weakly coupled 1S, (/=1/2,

S=1, n=1,2,3) spin system is presented. As a pulse sequence, the most commonly

used one, the gated decoupler sequence, is used. The obtained analytical results

were found to be in good agreement with the experimental ones.

INTRODUCTION

There exists a large number of homo and heteronuclear multi—pulse 2D~

NMR experiments which are widely used for molecular structure determination
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and other purposes [e.g.,1-3]. In order to describe multi~pulse 2D NMR
experiments, a quantum mechanical formalism has to be employed. Density matrix
formalism has a universal applicability and all other quantum mechanical
formalisms were driven from it. In density matrix formalism, operators are
represented by the matrices. For example, for N spin-1/2 system, the dimension of
the matrices is 2"x2" Therefore to deal with these matrices is cumbersome. On the
other hand, in product operator technique, the spin operators themselves and their
direct products are used and 2D-NMR experiments can easily be understood. The
detailed discussion on product operator formalism and its usage in some 2D NMR
experiments can be found elsewhere [4-10].

In one dimensional NMR, as the multiplets from different chemically
shifted nucler overlap. spectral assignments become too difficult In order to
resolve the chemical shift and spin—spin coupling parameters along the two
different axes, 2D J resolved spectroscopy is widely used. For example, an
experimental result of heteronuclear 2D-J resolved NMR spectroscopy for CD,
(n=1,2,3), in a mixture of toluene, a—[D,] toluene, a—[D,] toluene and o—[Ds]
toluene sample, 1s presented by Schmitt et al. [11].

In this study, by using product operator technique, an analytical description
of heteronuclear 2D-J resolved NMR spectroscopy for a weakly coupled 1S, spin
system (/=1/2, S=1) is given. In section 2, the product operator formalism theory is
briefly introduced. The application of product operator technique to heteronuclear

2D-]J resolved NMR spectroscopy for /S, spin system is presented in section 3

THEORY

Time dependency of the density matrix is governed by Liouville equation;
— = [0, H]. (n

Where [0, H] is the commutator of the density matrix. o and the Hamiltonian. H.

We neglected the presence of relaxation during the pulse experiment as usually
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done. Thus, in case of H is time independent, the solution of the Eq.(1) is

o(t) = exp(-iHt)o(0) exp(iH!). 2)
Where H is the total Hamiltoman which consists of radio frequency (r.f)) pulse,
chemical shift and spin-spin coupling Hamiltonians and of0) is the density matrix at

t=0. After employing the Hausdorff formula [6]
. . _ @it)?
exp(—iHt) Aexp(iHt) = A (in[H, 4] +—-[H,[H, 4]]

@’
e

(3)
[A.[8, 1 A]+...,

the r.f pulse, chemical shift and spin—spin coupling evolution of product operators
can easily be obtained. The effect of the rf pulse Hamiltonian on the spin

operators is easily obtained:

Ht

I.r ‘-—4)11, (43.)
1" I,cos@ + Lsing, (4b)
IZ—H'—) Lcos@ —1,sin6. (4¢)

Where H= w,l,, 6=t and w; is the radio frequency. Chemical shift Hamiltonian

evolution of the spin operators can be found:

I, —2 5 Icos( + I,singX, (5a)
L—"">I,cos(x —I.sing2, (5b)
L—2 1. (5¢)

Where H-=(2.. The action of the spin—spin coupling Hamiltonian on the product

operators in 1S spin system (/=1/2, §=1) yields

L~ 1S, s, 101+ 8.2 (cs-1)), (6a)
L~ 1S, s+ L1+ 82 (e 1)), (6b)
IS~ 518, ¢+ 1S s, (6¢)
LS~ 51,8, ¢;-1.57 s, (6d)
LS 5187 ¢s ~ LS. s, (6e)

LS 5187 ¢i-1.S. 5. (69
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Where, H=2n/JL.S: is the weak coupling Hamiltonian, s, sin2m/i . ¢, cos2 ot
and the product operators are the direct products of spin angular momentum
operators, e.g. [S. is [,&5. At any time during the experiment, the ensemble
averaged expectation value of the spin angular momentum, e.g. for /,, is
I, -~ Tr(lyoty). %
Where of) is the density matrix operator calculated from Eq.(2) at any time. As
I, s proportional to the magnitude of the y magnetization, it represents the
signal detected on y axis. In the following section, the product operator technique
1s applied to heteronuclear 2D-J resolved NMR spectroscopy for 15, spin system

(=172, $=1,n=1,2.3).

APPLICATION TO 2D-J RESOLVED NMR SPECTROSCOPY

In description of the muiti—pulse NMR experiment by product operator
technique, 1t 15 necessary to obtain the 7r(1,(J) values of observable product
operators indicated by O. For IS, spin system (/=1/2, §=1, n=1,2,3), Tr(1,0) values
for some of the observable product operators were calculated by a computer
program developed in this study and the results are given in Table 1.

In the following, the gated decoupler pulse sequence (illustrated in Fig.1)
1s used for an analytical description of heteronuclear 2D-J resolved NMR
spectroscopy for 1S, spin system (/=1/2, $=1). As seen in Fig.1, the density matrix
operator at each stage of the experiment 1s labeled with numbers. o, 1s the density
matrix operator at thermal equilibrium and

or=1.. (8)
IS Spin System:

For IS spin system, the pulse sequence in Fig.1 obviously leads to the

following density matrices for each labeled point:
oy~ -, o= -1, and os=1,. 9)

Here we assumed that during t,, relaxation and evolution under chemical shift do
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TABLE 1
The results of the 7r(1,0) calculations for some of the observable

product operators in IS, spin system (J=1/2, §=1, n=1,2,3).

Spin System Product Operator (O) r(1,0)
5 I 31
LS? 1
IS; 1, 9/2
] y(S Izz+ S2:2) 6
I yS Iz2S222 2
IS; 1, 2712
Iy(SIzz+S222+S322) 27
IS 1 S22+ 812857+ 8528 3.%) 18
I, y S IzZSZzJSJzZ 4
«— ti >< tHL—>
90, 180
© Detection
I /2 /2
1 2 3 4 6
S Decouple Decouple

FIG.1. The gated decoupler pulse sequence for heteronuclear 2D-J

resolved NMR spectroscopy.
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not take place. Spin—spin coupling obviously exist only during the second half of t,
and therefore,
os= -LS, s+ L1+ 8 (c;-1)). (10)
Where s;=sinnJt, , c;=cosmJt;. Furthermore, under the chemical shift evolution
during t;, the density matrix becomes
os= ~(Icci +1,8)8, 57+ (I, c;-L.s) +(1,¢,-L: s)S.” (c;=1). 1
In this and in the following equations, ¢/=cosQt,; and s,=singt,. Here only
observable 7, and I,S.” product operator terms contribute to the signal on y axis
detection. As a resuit, o5 in Eq.(11) simplifies to:
as=1I,c,+ 1,8 ci(c;-1). (12)
In the case of on y axis detection, magnetization along vy axis is proportional to
~I,> and
Mt t)o I, =Tr,c4). (13)
Then, using Table 1, we obtained
<Iy>= Tr(l e, + Tr(1,S:)cile;—1)

crrecy. (14)

9] —

In this equation, the first term represents the chemical shift on F» axis. The second
term shows that the spin—spin coupling information appears on F, axis and
represents two separate coherence with phases Q#,#m/t; and half of the amplitude
in each component. Therefore, this gives a triplet of signals at (J/2,0), () and (-
J72,¢3) with an intensity distribution of (1,1,1) and since the gated decoupler pulse
sequence 1s used, spin—spin coupling in F, dimension is scaled by a factor of 0.5.
IS; Spin System:
By using the same pulse sequence for /S, spin system, we obtain

o=, (15)
05= 1,81:82:87 ~LfS1:+S2)8) L8182+ 812 S2:) (1= )5+, ALS+ S0 ) (e -1)
+1,8:°82 () -1) (16)
and

os=lcrt I S+ 82 )eies 1) +1 LS 1282 encs-1). an
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Then,

3
Tr(l,04)= 5 e 2csertcac (18)

i1s obtained. Here cy=cos2z/t;. In a similar manner to IS system, Eq.(18)
represents the signals at (J,©), (J'2,0), (©2), (-J'2,2), and (-/,<2) with an intensity
distribution of (1,2,3,2.1).

IS; Spin System:

Applying the same procedure, we obtain

Ts ;IyCI v 1,\'('5'122* S.?:—7 "' S3z.’) CI(CJ —1) + I,V(SI:‘?SZZZ* SI:ZS3:2 + SZ:JSJZZ) CI(CJ _1)2
+1,8,782"S s eifes 1) (19)

and

Tr(l,00) =

(S NN

¢+ 6¢ic+ 3cicoytCicsy (20)

In Eq.(20) cy=cos3z/t; and as a result this equation represents the signals at
(3J°2,2), (J,.2). (J'2,.2), (), (=)2,2), (-).&2) and (-3J/2,&3) with intensities of
(1,3,6,7,6,3,1).

One dimensional 'C NMR spectrum and 2D-J resolved “C NMR
spectroscopy of a mixture of toluene, o—[Dy] toluene, a—[D-] toluene and o—[Ds]
toluene sample were presented elsewhere [11]. In one dimensional spectrum, it is
too difficult to assign the multiplets but in 2D-J resolved spectrum, chemical shift
and spin-spin coupling information are well separated into two axes. For /5.(CD;)
spin system, analytical results obtained here are consistent with the experimental
results of Schmitt et al. [11].

As a conclusion, in this study an application of product operator description
to 2D-J resolved NMR spectroscopy for IS, (/=1/2, §=I, n=1,2,3) spin system is
presented. Obtained analytical results are compared with the experimental ones and

found to be in good agreement.
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